Neutral-ODN (Control for iODNs) Endotoxin-free (sterile)

Neutral-ODN (Control for iODNs) Endotoxin-free (sterile)

Chemicals & Biochemicals

Article No

IAX-200-202-C100

Size

100 µg

Shipping Information

RT

Species Reactivity

human
mouse
rat

Article No

IAX-200-202-C100

Size

100 µg

Shipping Information

RT

Species Reactivity

human
mouse
rat

Specifications

MW 4,821g/mol
Additional Information Contains: 100µg size includes 1.5ml ddWater Endotoxin-free (sterile) (Cat. No.: IAX-900-002-LD15). 1mg and 3 x 1mg sizes each include 10ml ddWater Endotoxin-free (sterile) (Cat. No.: IAX-900-002-L010). Reconstitution Note: Add 50% of solvent and let dissolve for 10min. Add remaining 50% of the solvent and mix thoroughly. Moderate warming may aid dissolving.
Article No IAX-200-202-C100
Country Availability SE, FI, DK, NO, IS, EE, LV, LT
Description Neutral-ODN (Control for iODNs) Endotoxin-free (sterile)
Supplier Adipogen Life Sciences
Endotoxin <0.002EU/µg
Additional Information Contains: 100µg size includes 1.5ml ddWater Endotoxin-free (sterile) (Cat. No.: IAX-900-002-LD15). 1mg and 3 x 1mg sizes each include 10ml ddWater Endotoxin-free (sterile) (Cat. No.: IAX-900-002-L010). Reconstitution Note: Add 50% of solvent and let dissolve for 10min. Add remaining 50% of the solvent and mix thoroughly. Moderate warming may aid dissolving.
Format Powder
Notes Chemical. MW: 4,821g/mol. In recent years several groups have studied the sequence requirements, specificity, signalling pathways and kinetics of the TLR (Toll-like receptor) 9 suppression by inhibitory oligonucleotide motifs, which led to a class of novel inhibitory oligonucleotide (iODNs), that is independent of the previously thought species preference. Subsequently it has been discovered that telomeric DNA repeats (TTAGGG)n can block immune activation by CpG-ODNs. Short, 11-15 base long oligonucleotides were synthesized that were capable of potently inhibiting CpG-stimulation. The optimal inhibitory DNA motif consists of a pyrimidine-rich triplet, preferably CCT, which is positioned 5- to the GGG sequence in a singlestranded DNA molecule. Additionally, both the optimal spacing between the CCT and GGG motifs, as well as their relative order to each other, is of crucial importance for the inhibitory DNA action. Interestingly, although both TLR7/TLR8 ligands and bacterial DNA share the endosomal compartment for receptor binding and signal transduction, certain iODNs (G-type) suppress only TLR9-mediated activation, whereas prototype class I iODN may also interfere with the activation via the TLR7/TLR8 pathway. Recently, intriguing evidence has been presented that for some iODN classes the immuno-modulatory biological activity shows only limited sequence dependency or may not even involve TLR-mediated uptake and signaling pathways. For example iODNs of the class II are thought to act on immune activation through inhibition of STAT signaling and independent of TLR signaling via binding to a yet to be identified 'ODN-receptor'. Slightly modified phosphodiester versions of the most potent inhibitory ODNs were also able to profoundly block the immune activation of macrophages and just recently prove to be valuable tools for in vivo use in experimental animal models of inflammatory and auto-immune diseases. Based upon these recent insights the following classification for iODNs has been suggested: Class I: G-stretch ODNs: TLR9-specific competitors, some iODNs may also affect TLR7 and TLR8 signalingClass II: ODNs with telomeric repeats: TLR-independent inhibitors of STAT signalling (cellular uptake via an 'ODN receptor'?)Class III: Inhibitors of DNA uptake in a sequence independent mannerClass IV: Long phosphorothioate ODNs as direct competitors of TLR9 signaling in a sequence independent manner|In recent years several groups have studied the sequence requirements, specificity, signalling pathways and kinetics of the TLR (Toll-like receptor) 9 suppression by inhibitory oligonucleotide motifs, which led to a class of novel inhibitory oligonucleotide (iODNs), that is independent of the previously thought species preference. Subsequently it has been discovered that telomeric DNA repeats (TTAGGG)n can block immune activation by CpG-ODNs. Short, 11-15 base long oligonucleotides were synthesized that were capable of potently inhibiting CpG-stimulation. The optimal inhibitory DNA motif consists of a pyrimidine-rich triplet, preferably CCT, which is positioned 5- to the GGG sequence in a singlestranded DNA molecule. Additionally, both the optimal spacing between the CCT and GGG motifs, as well as their relative order to each other, is of crucial importance for the inhibitory DNA action. Interestingly, although both TLR7/TLR8 ligands and bacterial DNA share the endosomal compartment for receptor binding and signal transduction, certain iODNs (G-type) suppress only TLR9-mediated activation, whereas prototype class I iODN may also interfere with the activation via the TLR7/TLR8 pathway. Recently, intriguing evidence has been presented that for some iODN classes the immuno-modulatory biological activity shows only limited sequence dependency or may not even involve TLR-mediated uptake and signaling pathways. For example iODNs of the class II are thought to act on immune activation through inhibition of STAT signaling and independent of TLR signaling via binding to a yet to be identified 'ODN-receptor'. Slightly modified phosphodiester versions of the most potent inhibitory ODNs were also able to profoundly block the immune activation of macrophages and just recently prove to be valuable tools for in vivo use in experimental animal models of inflammatory and auto-immune diseases. Based upon these recent insights the following classification for iODNs has been suggested: Class I: G-stretch ODNs: TLR9-specific competitors, some iODNs may also affect TLR7 and TLR8 signalingClass II: ODNs with telomeric repeats: TLR-independent inhibitors of STAT signalling (cellular uptake via an 'ODN receptor'?)Class III: Inhibitors of DNA uptake in a sequence independent mannerClass IV: Long phosphorothioate ODNs as direct competitors of TLR9 signaling in a sequence independent manner
Alias Names Negative Control for inhibitory ODNs (iODNs) and CpG ODNs (TLR9 agonists)
Product Type Chemicals & Biochemicals
Protocol Contains: 100µg size includes 1.5ml ddWater Endotoxin-free (sterile) (Cat. No.: IAX-900-002-LD15). 1mg and 3 x 1mg sizes each include 10ml ddWater Endotoxin-free (sterile) (Cat. No.: IAX-900-002-L010). Reconstitution Note: Add 50% of solvent and let dissolve for 10min. Add remaining 50% of the solvent and mix thoroughly. Moderate warming may aid dissolving.
Research area Immunology
Sequence 5'-tcctgcaggttaagt-3' (lower case letters: phosphorothioate linkage: nuclease resistant)
Shipping Information RT
Size 100 µg
Species Reactivity human, mouse, rat
Stability Stable for at least 2 years after receipt when stored at +4°C.
Storage 4°C
Substrate / Buffer Lyophilized. Sterile.
Technical Specifications Chemical. MW: 4,821g/mol. In recent years several groups have studied the sequence requirements, specificity, signalling pathways and kinetics of the TLR (Toll-like receptor) 9 suppression by inhibitory oligonucleotide motifs, which led to a class of novel inhibitory oligonucleotide (iODNs), that is independent of the previously thought species preference. Subsequently it has been discovered that telomeric DNA repeats (TTAGGG)n can block immune activation by CpG-ODNs. Short, 11-15 base long oligonucleotides were synthesized that were capable of potently inhibiting CpG-stimulation. The optimal inhibitory DNA motif consists of a pyrimidine-rich triplet, preferably CCT, which is positioned 5- to the GGG sequence in a singlestranded DNA molecule. Additionally, both the optimal spacing between the CCT and GGG motifs, as well as their relative order to each other, is of crucial importance for the inhibitory DNA action. Interestingly, although both TLR7/TLR8 ligands and bacterial DNA share the endosomal compartment for receptor binding and signal transduction, certain iODNs (G-type) suppress only TLR9-mediated activation, whereas prototype class I iODN may also interfere with the activation via the TLR7/TLR8 pathway. Recently, intriguing evidence has been presented that for some iODN classes the immuno-modulatory biological activity shows only limited sequence dependency or may not even involve TLR-mediated uptake and signaling pathways. For example iODNs of the class II are thought to act on immune activation through inhibition of STAT signaling and independent of TLR signaling via binding to a yet to be identified 'ODN-receptor'. Slightly modified phosphodiester versions of the most potent inhibitory ODNs were also able to profoundly block the immune activation of macrophages and just recently prove to be valuable tools for in vivo use in experimental animal models of inflammatory and auto-immune diseases. Based upon these recent insights the following classification for iODNs has been suggested: Class I: G-stretch ODNs: TLR9-specific competitors, some iODNs may also affect TLR7 and TLR8 signalingClass II: ODNs with telomeric repeats: TLR-independent inhibitors of STAT signalling (cellular uptake via an 'ODN receptor'?)Class III: Inhibitors of DNA uptake in a sequence independent mannerClass IV: Long phosphorothioate ODNs as direct competitors of TLR9 signaling in a sequence independent manner
Product Page Updated 2024-02-01T08:25:01.492Z

Documentation

References

Show more
Shipping info
The delivery time for this item is approximately 5-8 business days. Read more